CZAKI THERMO-PRODUCT

page 1/2

05-090 Raszyn-Rybie, ul. 19 Kwietnia 58 Poland www.czaki.pl tel. +48 22 7202302 fax +48 22 7202305 e-mail czaki@czaki.pl

areas

TEMPERATURE SENSOR TYPE TP-Exi-461, TP-Exi-462, TP-Exi-463

	Temperature measure	ement in mining plants, gas and dust hazardous
	ATEX designation	C € €x I M1 Ex ia I Ma C € €x II 2G Ex ia IIC T6-T1 Gb C € €x II 1D Ex ia IIIC T85°C Da
	Temperature range	-200°C+550°C
П	Option - temperature	transmitter

Sensor	Atmosphere	Temperature	ATEX
type	type	range	designation
	mines	-20÷150°C	🖾 I M1 Ex ia I Ma
TP-Exi-46X-XPX	gases	-200÷550°C	
	dusts	-200÷550°C	᠍ II 1D Ex ia IIIC T85÷550°C Da

These temperature sensors are recommended for temperature measurements in mines (sensor category M1) in explosive gases (sensor category 2 G) and dusts (sensor category 1 D).

The sensing element of the sensor is a Pt100 resistor placed in a flexible sheathed cable made of stainless steel 1.4541. Sheathed cable is made of copper-zirconium alloy (CuZr) wires insulated with highly compacted mineral powder (99% MgO) and metal sheath (casing) providing mechanical and chemical protection of wires and the Pt100 resistor.

This design allows for high flexibility, high mechanical resistance and short reaction time.

Note: rigid end of the probe is 40 mm in length.

An ATEX certified temperature transmitter which converts the measured values to a 4-20mA, 0-20mA or 0-10V (option) signal can be mounted in the connection head.

For each sensor an Instruction Manual, Warranty Card and Declaration of Conformity are supplied.

A free of charge Quality Certificate specifying the class of the sensor or payable Calibration Certificate for the specified temperature values is supplied on request.

TECHNICAL DATA

Process connection without or compression gland, stainless steel 1.4541 (option)

Protection sheath Ø3, Ø5, Ø6mm, stainless steel 1.4541

Sensing element Pt100, EN 60751 class B

Connection head and cable gland head type XE-DANA, IP65, ATEX II 2GD

cable gland ATEX II 2GD, IP65, for cable of outer diameter $\emptyset6 \div \emptyset8$ mm head type XE-BE, IP65, ATEX I M2, operating temperature up to 100° C cable gland ATEX I M2, IP65, for cable of outer diameter $\emptyset6 \div \emptyset12$ mm

Ambient temperature (Tamb) -40°C +75°C

Response time t_{no} ca.10s (in water 0,2 m/s for Ø3mm), t_{no} ca.40s (in water 0,2 m/s for Ø6mm)

Maximum operating pressure 0,1MPa
Temperature transmitter (option) ATEX certified

05-090 Raszyn-Rybie, ul. 19 Kwietnia 58 Poland www.czaki.pl

tel.

+48 22 7202302

Temperature sensor type TP-Exi-461, TP-Exi-462, TP-Exi-463

page 2/2

(1) Basic version TP-Exi

(2) Protection sheath

461 Ø3mm462 Ø5mm463 Ø6mm

(3) Sensing element

 1P2
 1xPt100 2-wires

 1P3
 1xPt100 3-wires

 1P4
 1xPt100 4-wires

 2P2
 2xPt100 2-wires

 2P3
 2xPt100 3-wires

(4) Length in mm (100<L<5000)

100 100 mm 150 150 mm

... other length (by 50 mm)

(5) ATEX designation

mines I M1 Ex ia I Ma gases II 2G Ex ia IIC T6 Gb dusts II 1D Ex ia IIIC T85°C Da

(6) Additional accessories (option)

0 without

KP compression gland (type acc. to catalogue page)

T ATEX certified temperature transmitter (parameters acc. to catalogue page)

class A sensor class (other than basic)

Additional accessories please specify at the end, for example KPM10x1-3, class A

The designer of the installation will be responsible for selecting a type of sensor and method of its implementation such that after installation, during extreme operating conditions, the temperature of the sensor's hottest surface is lower than the temperature class for a given substance (gas, mist, vapor).

The designer of the installation will be responsible for selecting a type of sensor and method of its implementation such that after installation, during extreme operating conditions, the temperature of the sensor's hottest surface is lower than 2/3 of the ignition temperature of dust cloud T_{cl} or ignition temperature of a 5-millimeter layer of dust T_{smm} reduced by 75K.

